A Strange Rubik’s Cube Story

Two years ago, my wife offered me a very nice gift:

While that was a great gift and the kind of challenge that I would take on, I felt embarrassed as I even had no idea how to solve this:


And at the same time, I remembered how, as a child, I had swapped stickers on a 3×3 Rubik’s cube in the hope of solving it. Embarrassing. Well, of course…

However, I didn’t want to cheat this time.

So I took the bull by the horns and learned a method to solve virtually any cube. It’s quite simple when done right but requires some persistence and trial and error at the beginning. I’ll probably make some video tutorials even if there are already many of them out there. The method I use enables me to go from this:

to this where the 2×2 and 3×3 have been solved and the others are on the way:

to finally all of them solved:

And those don’t have stickers, no cheating allowed and I wouldn’t paint them and ruin them.

There are many methods to solve cubes. Fast ones, especially for the 3×3, that don’t really work for other cubes. Universal and slow ones.

My goal was to solve any cube, including my wife’s present, not to do what is called “speed cubing”. I actually wanted to learn as few “algorithms” or “formulas” as possible as I don’t plan to solve cubes for the rest of my life. I reduced it to:

  • 2 algorithms for the 2×2,
  • 2 more algorithms for the 3×3 (that’s 4 in total),
  • 3 more algorithms for the 4×4 and all others (7 algorithms in total).

Yes, you read that right: with as little as 7 “programmed series of moves”, you can literally solve *any* cube.

Most of these “algorithms” are easily memorized using mnemonics such as a little story. It is also necessary to be able to perform the mirrored version of every algorithm, but that’s not a big deal with a little training.

Here are the basic steps to solve all these cubes. First solve the center part of a single face (here the green one), this doesn’t need any algorithm as it is quite simple (note that nothing needs to be done for the 2×2 and 3×3):

Next, solve the edges of that face, making sure that the other sides match the colors of the centers of the other sides. No need for an algorithm here either, it is quite intuitive. However, for cubes with an even number of pieces, you have to memorize the order of the colors, clockwise red, white, orange, yellow. Just use whatever mnemonic works for you. If RWOY, like in “Rob Rwoy” works, then that’s what it is. 🙂

Note how it forms a cross on top of the cube (again except for the 2×2 which still doesn’t change).

Then solve 3 of the green corners on all cubes, which is very easy and simply requires a bit of logic:

Let’s turn all the cubes to the side to have a better look at what happens next:

Start solving the edges from the green corners (see how the edges that are closer to us in the picture start getting solved), this again doesn’t require any algorithm:

Let’s turn the cubes again:

Now solve the last edge and solve the half edge under it as well as other edges that may not have been finished yet. Here comes the first algorithm:

Note that at this point, the 2×2 is half solved and 2/3 of the 3×3 is solved as well. Let’s turn the cubes to their other side, where everything will happen from now:

At this point, the 4 blue corners can be solved with 3 different algorithms (one of them is a combination of two others, so it doesn’t count as new), and the middle blue edge is also solved with one algorithm. At this point, the 2×2 and 3×3 are solved. So it looks like this:

Now let’s solve the remaining top edges (blue ones) with one algorithm:

Note that the edges of the second row from the top are still not solved, so now is the time to solve them, one algorithm is required for this:

And now, the centers need to be solved with one single algorithm declined in different ways, it is generally the longest part, especially with bigger cubes, and needs some planning, memory and solving skills. Et voila!

Stay tuned for some videos in the future that will show how to learn and apply the different algorithms.