This research revolutionizes our understanding of Covid-19

https://chemrxiv.org/articles/COVID-19_Disease_ORF8_and_Surface_Glycoprotein_Inhibit_Heme_Metabolism_by_Binding_to_Porphyrin/11938173

Warning: this paper has generated an answer which claims that the authors used wrong methodology to get to their results – so this could be all wrong. Remember, we are in a research phase here.

This paper totally changes the way we understand how Covid-19 works. By using only computer models, the authors made fascinating discoveries. Here is a very short summary of their findings.

Covid-19 attacks hemoglobin

The authors discovered that the virus doesn’t attack the lungs, but rather… hemoglobin. You know, that red thing found in red blood cells which carries oxygen in the body.

As the virus attacks hemoglobin (actually only the “heme” part), it impairs the transport of oxygen. Therefore, it deprives the body from this essential component. Besides, it also reduces the transport of carbon dioxide, which slowly poisons the body.

As for the lungs, they do still try to transmit oxygen. Unfortunately, that oxygen remains stuck in the alveoli due to lack of hemoglobin in the blood. This creates an inflammation of the alveoli and a general irritation of the lungs.

Thus, it is not surprising that ventilators have little effect on patients, as many doctors report. We would definitely need something to cleanse the blood and enable transport of oxygen and carbon dioxide.

Covid-19 uses porphyrins to enter cells

We thought that Covid-19 entered the cells through ACE2 receptors. However, we know since the beginning that its affinity with those receptors is quite limited. Something was off, but we stuck to it for want of anything better.

This paper shows that the virus can dock on porphyrins (and synthesize some as well). These are building blocks of all living things. They were some of the first organic compounds that made life possible. Here comes the catch: some porphyrins can enter the cells, to bring in oxygen or some metals, for instance.

The virus, thanks to its docking mechanisms to those molecules, could use them as keys to enter the cells. Therefore, it wouldn’t even need to use ACE2 receptors.

Analysis on some potential drugs/cures

This paper shows that chloroquine can dock on some parts of the virus which attack hemoglobin. Of course, this is great news. However, the authors’ models suggest that the binding is not very strong. This could explain why it seems that chloroquine is not a miraculous treatment. Instead, its efficiency varies greatly from one patient to the next.

An antiviral, Favipiravir, can dock on portions of the virus which normally lock on porphyrins. Therefore, it prevents the virus from using porphyrins as keys to enter the cells. Thus, this antiviral can slow down the proliferation of the virus. This is especially true at the beginning of the infection.

Conclusion

The authors carefully note that further research is needed to confirm their findings. Indeed, those are only theoretical models that need to be tested in real life. However, their research offers tremendous perspectives in enhancing our understanding of this virus. Outstanding!

Cette recherche révolutionne notre compréhension du Covid-19

Voici le lien vers l’article en question

Attention : ce papier a fait l’objet d’une très sérieuse critique, qui semble montrer que la méthodologie des auteurs n’est pas sérieuse et que leurs résultats ne sont donc pas corrects.

Ce papier révolutionne totalement notre compréhension du Covid-19. Tout ça en utilisant uniquement des modélisations sur ordinateur. Impressionnant. Voilà un très rapide résumé de leurs trouvailles.

Le Covid-19 attaque l’hémoglobine

Si ce que montrent les auteurs est confirmé, le virus ne s’attaque pas aux poumons mais à… l’hémoglobine. Vous savez, ce truc rouge présent dans les globules rouges qui permet d’amener l’oxygène un peu partout dans le corps.

Comme le virus capture l’hémoglobine (en fait, juste sa partie « heme »), le transport d’oxygène ne se fait plus. De fait, le corps est privé de cet élément vital. Par ailleurs, le transport du dioxyde de carbone est également perturbé, ce qui intoxique le corps.

Au niveau des poumons, ceux-ci s’enflamment parce que le dioxygène qu’ils mettent à disposition ne passe plus dans le sang par manque d’hémoglobine, ce qui crée une inflammation et l’obstruction des alvéoles.

Pas étonnant, donc, que les ventilateurs ne soient pas efficaces. Il nous faudrait plutôt un mécanisme pour nettoyer le sang et permettre le transport de ces deux gaz.

Le Covid-19 utilise les porphyrines pour entrer dans les cellules

On croyait que le virus entrait dans les cellules par les récepteurs ACE2. Or, on le sait depuis le début, le virus n’a que faiblement d’affinité avec ces récepteurs. Dès le départ, on pouvait déjà penser que les récepteurs ACE2 n’étaient peut-être pas le mode majeur d’entrée du virus dans les cellules.

Ce papier montre que le virus peut se fixer sur les porphyrines (et en synthétiser certaines). C’est une classe de molécules organiques présentes dans tous les êtres vivants. En fait, ce sont des blocs de base de la construction même du vivant. Or, certaines porphyrines permettent d’entrer dans les cellules. Elles peuvent par exemple y amener de l’oxygène ou des métaux.

Le virus profiterait justement de cette clé pour entrer dans les cellules, sans avoir besoin de passer par les récepteurs ACE2.

L’effet des médicaments

La chloroquine se fixe sur les parties du virus qui attaquent justement l’hémoglobine. C’est évidemment une bonne nouvelle. Mais les auteurs soulignent que sa capacité à se fixer sur le virus n’est pas très forte. Cela explique une efficacité mitigée et très variable selon les individus.

Le Favipiravir (un antiviral testé contre le virus) se fixe sur les portions du virus qui lui permettent de s’accrocher à des porphyrines. Cet antiviral l’empêche ainsi de rentrer dans les cellules. C’est donc un moyen d’endiguer sa reproduction, particulièrement en tout début d’infection.

Conclusion

Les auteurs précisent qu’il faudrait d’autres travaux pour confirmer leurs découvertes. Néanmoins, c’est un pas de géant en avant dans notre compréhension du virus. Chapeau bas.